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A Hybrid Dielectric Slab-Beam Waveguide
for the Sub-Millimeter Wave Region

J.W. Mink, Fellow, IEEE and F.K. Schwering, Fellow, IEEE

Abstract—A hybrid dielectric slab-beam waveguide is suggested
which should be well suited as transmission medium for the
design of planar quasi-optical integrated circuits and devices
operating in the mm and sub-mm wave regions. The new guide
consists of a grounded dielectric slab into which a sequence
of equally spaced cylindrical lenses is fabricated. (The center
line of the slab guide is the axis of the lenses). The structure
uses two distinct wave guiding principles in conjunction with
each other to guide electromagnetic waves. In the direction
normal to the slab surface, the guided fields behave as surface
waves of the slab guide; their energy is largely confined to the
interior of the dielectric and they are guided by total reflection
at the slab surface. In the lateral direction the waves behave as
Gauss—Hermite beammodes that are guided by the lenses which
periodically reconstitute their cross sectional phase distribution,
resulting in a wave beam that is iterated with the lens spacing.
The guided fields are in effect TE and TM modes.

The analysis of the new guiding structure is presented: The
mode spectrum is calculated and the iteration loss due to the
finite size of the lenses is estimated.

1. INTRODUCTION

ECTANGULAR dielectric waveguide and its variants

such as image guide, insular guide, trapped image line
and suspended dielectric line are well suited for use in the
mm-wave region. Their low loss gives them an advantage
over microstrip line and they are casier and less expensive
to fabricate than metal waveguide. A review of these guides
may be found for example in [1], [2] which also present
bibliographies on this subject.

As is well known, the guidance principle employed in
dielectric guides is total reflection at the dielectric surfaces,
which confines the transmitted energy in effect to the interior
of the guides. Typically, the width of these guides is chosen to
be somewhat less than a half wavelength in the guide material
to avoid over-moding. A consequence is that at the small
wavelengths in the upper mm-wave region the guide width
becomes extremely narrow, in particular when high-¢ material
is used and the guides would be very difficult to fabricate.

The hybrid dielectric slab-beam waveguide suggested in
this paper resolves this problem by the use of a quasi-optical
guidance principle (iteration by periodic refocusing) to provide
beam confinement in the lateral direction; this permits one to
make the width of the guide electrically large. The guide will
propagate a spectrum of modes. But the guidance principle
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employed here insures that the field distribution of the modes
is virtually independent of the guide width. In other words,
if a single mode is launched on the guide it will suffer little
degradation due to mode conversion as it travels down the line,
even if the guide width shows some variation. Hence, there is
no need for maintaining a constant width at tight tolerances.
In addition, bends and transitions are easily implemented in
this guide in standard quasi-optical technology while causing
minimum radiation loss and mode conversion; and guide
sections operated as open resonators should be well suited for
the design of quasi-optical power combiners that could serve
as single mode power sources for these guides [3].

The configuration of the new guide is shown in Fig. 1. It
consists of a thin grounded dielectric slab of rectangular cross
section, into which a sequence of equally spaced cylindrical
lenses has been fabricated. As indicated in Fig. 1, the axis
of the lenses coincides with the center line of the slab guide
(propagation direction of the guide). The spacing of the lenses
s is assumed to be in the order of many guide wavelengths A;
the width of the slabguide w is in the order of at least several
A; and the thickness d of the guide typically will be chosen
sufficiéntly small so that only the fundamental surface wave
mode can exist on the slab. The convex shape of the lenses
indicated in Fig. 1(a) applies to the case that the permittivity
of the lenses exceeds that of the guide; in the opposite case, the
lenses will have the concave shape shown in Fig. 1(b), which
may simplify their fabrication and reduce their diffraction
losses.

The structure uses two distinct waveguiding principles in
conjunction with each other to confine and guide electromag-
netic waves. In the z-direction of Fig. 1, the field distribu-
tion of a guided wave is that of a surface-wave mode of
the slabguide; the wave is guided by total reflection at the
dielectric-to-air interface and its energy is transmitted primar-
ily within the dielectric. In the y-direction, the field distribution
is that of a Gaussian (or Gauss—Hermite) beammode which is
guided by the lemses through periodic reconstitution of the
cross sectional phase distribution, resulting in an “iterative
wavebeam” whose period is the spacing of the lenses. The
guided modes are, in effect, TE- or TM-polarized with respect
to the z-direction, the propagation direction of the guide.

The waveguide should be useful in particular for the
sub-mm region of the electromagnetic spectrum. It bridges
the gap between conventional dielectric waveguides employed
in the mm-wave region and slab type dielectric waveguides
used at optical wavelengths. Combining structural simplicity,
approaching that of a slabguide, with the increased lateral
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Fig. 1. Dielectric slab-beam waveguide. The lenses embedded in the
slab provide periodic refocusing and have a convex shape, case (a), if
lens > Eslab- If €iens < Eslabs the lens shape is concave, case (b).

dimensions of quasi-optical devices, it should be easy to
fabricate and show good electrical performance. The new
guide should be well suited in particular as basic transmission
medium for the design of planar integrated circuits and
components.

The study of waveguides specifically designed for the sub-
millimeter wave region is a relatively new research area.
Reference [4] provides an excellent, detailed review on (other)
monolithic guides that are promising candidates.

II. THEORY OF DIELECTRIC SLAB-BEAM
WAVEGUIDE OF INFINITE CROSS SECTION

We first treat the idealized dielectric slab-beam waveguide
of Fig. 2. It consists of a grounded dielectric slab of permit-
tivity e, which in the y-direction extends to infinity. In the
planes z = (2u— 1)z, with 4 = 0,1,2---, planar phase
transformers are inserted in the guide. The phase transformers
extend to infinity, both in the z- and y-directions, and similar
to cylindrical lenses introduce a phase shift in the transmitted
fields that is quadratic in y and uniform in z. All (active)
sources are located in the half space z < —z;.

We formulate the field in the space range —2; < 2 < +2;.
Since the guide structure in this region is uniform in y and
z, but layered in z, it is convenient to write this field as a
superposition of an E-field with H, = 0 and an H-field with
E, = 0. The FE-field and H-field are derived, respectively,
from an z-directed electric and magnetic vector potential ¥é&,
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Fig. 2. Idealized dielectric slab-beam waveguide with planar, infinitely thin
phase transformers. The slab is assumed to be unbound in the y-direction, and
the phase transformers extend to infinity in both the - and y-directions.

and ®e,,. The governing equation are, for the E-field:

— _ ko 2 - = = 1_1/0 5o . = -
E= <7€> VX(V X Wem), i~ H—]ko(vx \Ilem)
M
V24 kT =0 (2a)
. ko \?0¥
with U, ( ?> B continuous at z = d (2b)
o
e 0 atz=0 (20)
and for the H-field:
E = —jho(V x 0, ), B i =¥ x (Vxoz)
€0
€)
V20 4+ k2P =0 (4a)
with @, 5 continuous at x = d (4b)
®=0 atz =0 (4¢c)

Both ¥ and & satisfy an appropriate radiation condition for
x — o0; and k in (1) through (4) is defined as:

k=ks=koes, forO0<z<d
k=ky ford<z<oo 5)

where ko = 27/ )¢ is the free space propagation constant.

We write the potentials ¥ and @ as superpositions of ele-
mentary waves defined by the modes of the grounded dielectric
slab guide or, in mathematical terms, by the separated solutions
of (2) and (4). It is well known that the spectrum of slab guide
modes consists of two parts, a discrete spectrum of surface
wave modes guided by the slab and a continuous spectrum
of radiative modes (quasi-modes) describing radiation effects.
Taken together, these two spectra form a complete orthogonal
system into which any field, whose distribution in a plane
z = const is known, can be expanded. The fields of interest in
the present context are purely bound and do not radiate. Hence,
in any guide section between adjacent phase transformers,
these fields can be represented solely in terms of the surface
wave modes while the spectrum of radiative modes can be
disregarded.

In the two-dimensional case, that all field components are
independent of the y-coordinate, the slabguide modes are well
known [5]—[7]. E-type fields in this case reduce to TM-waves
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with the components E., F,, H, and H-type fields to TE-
waves with the components E,, H,,, H,. The potentials ¥ and
® are given by

U, (2,2) =Fu(2)e™%  @,(1,2) = Go(z)e 3P0

n=0,1---N n=0,1---N (6)
with
Fo(z) = cos[(\/kg——ﬁ—g)]x for0<z<d (7a)
(o) = oo (V= Y~ (VR (=
ford <z < oo
and

Gn(m)zgiﬂ{(m)]x for0<z<d (7b)
Gn(z) = sinK k2 — ‘ﬂ‘i )d}e_( Ei—kg) (w—d)

ford <z < 0

The propagation constants 3,, [, are determined by the
characteristic equations

TR (v (2) Ve "

for TM polarization (V,,) (8a)
and
VB =53 | (Vi3 - ) o= -2 -7,
for TE polarization (®,,) (8b)

respectively. Solution of these equations [5]—[7] yields the
well known dispersion curves of the surface-wave modes of
the slabguide, i.e. B, /ko and (3, /ko as functions of kod and
€. The propagation constants of these modes are in the slow
wave region

ko < Bn,y By, < ks -

and the cut-off frequency of the nth mode is given by

kod = % for TM polarization (9a)
1/2
kod = (nt1/2)r . for TE polarization (9b)
€s —

The total number of surface wave modes supported by a guide
of given permittivity and thickness is equal to the largest
integer satisfying the condition

k

N < kod Ves —1 for TM polarization (10a)
™

N<®d =5 _1/2. for TE polarization  (10b)
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For later use we note that the functions F,(z), Gn(z)
satisfy the orthogonality relations:

© ko \’ 1
/m:O (?> Fn(m)Fn(x) do = 2koe

(&) -1 {(éf(mm—ss]

o 1
/a; Gpn(2)Gp(x)dz = T

=0

~[k0d+ } Onnt (11a)

kod +

with
k=k,s
k=kg

Spy =1 forn' =n
8o =0 forn' #n

for0<x<d
ford <z < oo

Generalization to the three-dimensional case, where the
fields transmitted by the guide may depend on the y-coordinate
as well, is straight forward. The slabguide modes in this case
remain separated solutions of (2) and (4), and since the guide
structure is uniform in the y-direction, the y-dependence of
these modes is of the form e/"¥ with —oo < v < +00. The
three-dimensional surface wave modes thus take the form

U, (2,y,2) = Fp(x)el(09=hn?) n=0,1...N (12a)
Bp(2,y,2) = Gu(@)e!(v"72) =01, N (12b)

with
B2 =g —o? and B =73 — o (12¢)

Note that the x-dependence of these modes is given by the
same functions F,, and G,, as in the two-dimensional case.
But, for sufficiently large v, the modes become evanescent
in the z-direction; see (12c). The three-dimensional slabguide
modes of the propagating type are obtained simply by allowing
the corresponding two-dimensional modes to propagate in any
direction within the ¥, z-plane, instead of confining them to
propagation in the z-direction only. The relationship of the
three-dimensional modes of the evanescent type to the two-
dimensional modes has to be understood in terms of complex
directions of propagation, i.c., in the more formal way of (12c).

With (12), any field guided by the structure of Fig. 2 can
be written as the sum of an E-type field

N (o]
\IJ(,’E, Y,2) = Z Fn(x) / an(U)eJ(vy_h";) dv (13a)
n=0 —o0
hn = V32 —v2 for [v] < Bn
hn = —j/v2 —~ 32 for [v] > B, (13b)

and an H-type field

N co _
2e,1,2) = 3 Gnle) [ BT dr ()

n=0
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H

hn \/5,21 —v? for |v| < B,
ha, —j\/vQ—ﬁ: for |v| > B, .

The functions a.,, (v) and b, (v) are the mode amplitude spectra;
N and N are given by egs. (10); the signs of h,, and h,, are
in accordance with the assumption that all sources are located
in the half space z < —z.

Inserting (13) and (14) into (1) and (3) yields the field
strength components of the F-type and H-type fields. In
writing down these components we introduce the assumption
that—with regard to their y-dependence—these fields are
strongly collimated about the z-axis, i.e. we introduce the
“wavebeam condition” that the amplitude functions a,, and by,
are significantly different from zero only in a small v-range
centered about v = o:

(14b)

a,(v),bp(v) = 0 for |u| > v,

where v, € @uﬁn . (15)

The propagation constant k., may then be approximated by

= fp in amplitude terms

b = fn —

in phase terms.

3 7 (16)

A corresponding approximation holds for %,,. The approxima-

tion is valid in the z-range 3,|z] < 47r( % ) Since v, < Br
this z-range extends over many wavelengths and is assumed
here to exceed the range —z; < 2 < +2;.

Neglecting higher order terms involving integrals over
vka,(v) and v#b,(v), with 4 = 1,2..., the field derived
from the electric potential Wé,, reduces to a TM-wave with
the significant components b, E,, H,;

( ) ZﬂzF (%) An(y, 2)e ™77 (172)
n=0
2 N
F.= ( ) > 8, 22D 42y et )
n-*O
= Hy —koZﬂnF (#)An(y, 2)e 757 (17c)
=0
with
An(y,2) = / N an(v)ej(“y+'21‘5%z) dv (17d)

and the field derived from the magnetic potential ®&, reduces
to a TE-wave with the significant components E,, H,, H.:

N —
B, = —ko ZﬁnGn(x)Bn(y, 2)e"iPn%  (18a)
n=0
N R —
B2 H, =Y BuGn(@)Buly, 2)e ™7 (18b)
0 n=0
N —_—
£ g, =3 By Ky, (180
)

n——O
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with

B (y,2) = /io bn(v)ej(mﬁz%i Z) dv.

The fields (17) and (18) show the same TM and TE polariza-
tions as the corresponding two-dimensional (y-independent)
fields. Although only one of the three “cross polarized”
components of cach field is identically zero, the wavebeam
condition causes the two remaining components (£,, H, of
the E-field and E,, H, of the H-field) to be small so that
they can be neglected.

Similar to the theory of conventional beam waveguides
[8], [9] the amplitude functions a,, and b,, are expanded into
Gauss-Hermite functions

(18d)

Z Anmim(v)

m=0

bn('U) = Z Banm(U)
m=0

an(v) = 19

with

4n(v) = (~5)" Hem (ﬁ vi)a%(ﬁ :
where v,,, the mode parameter,2 is a constant inczlependent
of m and Hep(u) = (=1)"e* /2(d™/du™) (e~* /2). The

integrations in (17d) and (18d) can be performed in closed
form, with the result:

z) = Z Aannm(ya Z)

An(y, (20a)
m=0
Ba(4:2) = Y BumQpm(¥,72) (20b)
m=0
where
Un
Qnm(yaz) = Qm(yazﬂ)mﬂn) =V2r o1 %
[1 + ( B z) ]
CHe, ) Y2y
27z
[1 4+ (;—i‘ z) }
1 viy? J1 wgy’
1+ (3 2) 1+ (3 2)
2

(D)o ()] o

Qo (4.2) = Qun (v. 20,8, - (21b)

Thus the total field represented by (17) and (18) can be written
as a superposition of the partial fields

to koBn ko
n,m __ n,m _ F am (Y, 2
ppm = [ 50 g (50 0)um(0r2)
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. g=3Bnz (22a)
1 gEZ-™
D" 2—
% iBn Oz
n=0,1---N, m=0,1--00 (22b)
and
gy =[5 5 g G )0, ) 230
€0
ppem = £ O
jBn O
n=0,1---N, m=0,1---00 (23b)

where the functions F,, and G, are given by (7) and the
propagation constants 3,, 8, by (8). N and N are defined
by (10). For any plane z = const., the functions @, form a
complete system satisfying the orthogonality relation:

Equations (22) and (23) represent the partial fields in the
space range —z: < z < +z; of the guiding structure of Fig. 2.
We proceed to show that:

1) The field distributions of these fields can be iterated with
the period 2z; by performing appropriate phase transforma-
tions in the planes z = z;, 32, 5z -+

2) The required phase transformations can be made the
same for all partial fields by appropriately adjusting the mode
parameters v, and 7,,. All of these fields, regardless of their
mode numbers and polarizations, are then iterated by one and
the same guiding structure.

3) The partial fields satisfy orthogonality relations similar
to the modes in conventional waveguides.

The fields (22) and (23) can thus be regarded as the modes
of the dielectric slab-beam waveguide and, as in the case of
conventional beam waveguides, may be called “beam modes”.

To demonstrate these points we first note that the partial
fields are conjugate complex in planes +2z = const and —z =
const. Hence the field distribution in the plane z = —z; can
be reconstituted in the plane z = +2; by performing an appro-
priate phase transformation in this plane. The field distribution
in the range —2; < z < +z is then repeated in the range
+2; < 2z, +32;. By iterating this process, i.e., by performing
identical phase transformations in the planes » = 3z, 52 - - -
the field distribution of the partial field is repeated periodically
with the spacing 2z, of the phase transformers. The required
phase transformation A¢ is with (21):

4
P

Brn “t 2
v2 2 Y-
1+ (5 =)

It is quadratic in y and can be realized for example by a cylin-
drical lens. A lens of this type yields a phase transformation

A¢=—¢3n+§ﬂ7”y2

Ag = Agn(y) = (25)

(262)
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which takes the desired form (25), if the focal length of the
lens is chosen to be

_ 2t ﬂn 1 ?
f—5P+(@z>}

gZ;n is a constant that depends on the shape of the lens.! Equa-
tions (21) to (23) show furthermore that with each iteration
the partial fields are multiplied by a constant phase factor

(26b)

an = exp{—j [2lgnzt + d;n - (zm + 1)

()

which also includes the constant phase shift <Z>n of the lenses.
Equations (25) to (27) apply to TM-fields; for TE-fields v,,, B,
are replaced by T, B,

The important point to observe is that the focal length (26) is
independent of the mode number m and, in addition, becomes
independent of the mode number n and the polarization (TE
or TM) of the partial fields if

@7

2
YUn

—6::

St

= const. # f(n) (28)

:‘Ql, S

In other words, with this condition, all partial fields of arbitrary
orders n, m and both polarizations are iterated by one and the
same sequence of phase transformers. Conversely, a dielectric
slab-beam waveguide with a given set of lenses of focal length
f and spacing 2z, will iterate all partial fields (22) and (23)
provided their mode parameters are chosen according to the
relations

=2 /—gn

2 Bn and T° =
2(2f — )

n = m n (29)

which follow from (26b) and (28). Note that the propagation
constants 3,, (3, are given quantities determined by the
thickness d and permittivity ¢, of the dielectric slab, and that
the focal length f must exceed 2;/2 for (29) to have real
solutions, i.e. for iteration to occur.

!For the convex lenses of Fig. 1(a) we have ¢n = (5, /2f )y2, where
2yo is the lateral width (aperture) of the lenses. For the concave lenses of
Fig. 1(b), ¢, is zero if the lens thickness is very small at the center.
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The beammodes (22) and (23) satisfy the orthogonality
relations
€0 ko

EnmH ™ dyde = [ 2 22
/x:O /y:—oo Y Y 2] ﬂn
oo oo k 2 .,
/ / (—) EM™EN™ dyda
=0 =—00 ko
po Bu [T [7 ko \? *n',m’
= LA ) 2 H™ n',m
o ko /ac:O /y:—oo( k ) vy dy d

o 3 Un 1
el —7r2m!___..
Ko ﬂn Es

k0d+ 3 2 6nn’ 6mm’
(£)-1[(&) -
(30a)
for TM-modes, and
[e] o] A
_/ / Ep ™l dyde = [ = bn
=0 Jy=—o00 Ho kO
oo oo
/ / E;""‘E;‘"’m dy dz
z=0Jy=—0o0
k oo (o] , ,
= /2 __0/ / HY™H ™ gy doe
€0 ﬂn =0 Jy=—oc0
= i) r%m! ﬂn:n kod + ‘—“‘—%— Onn' Omm
V o ko 5. )’
(&) -1
(30b)

for TE-modes. Asterisks indicate conjugate complex values.
The mutual orthogonality of TM-modes versus TE-modes is
obvious since (in the approximation used here) they do not
have common transverse components. Equation (30) follows
directly from (11) and (24).

With relations (30) any field guided by the dielectric slab-
beam waveguide can be expanded into the beammodes of
this guide. The expansion is complete provided that the field
satisfies the wavebeam condition (15) with regard to its y-
dependence and, concerning its z-dependence, behaves as a
surface wave field of the dielectric slab.

While the field distribution of each beammode is strictly
periodic with the spacing of the phase transformers, this does
not necessarily apply for a composite wavebeam consisting
of several beammodes. With each iteration the beammodes
are multiplied by the phase factors I',, ,,, (27), which depend
on the mode numbers n and m, and the complex amplitude
spectrum of the wavebeam will vary from section to section
of the guide. The total power of this wavebeam, however,
is preserved since the beammodes are powerwise orthogonal
and the absolute value of each T', , is unity. Note that
this holds for the idealized dielectric slab-beam waveguide
considered here having lossless phase transformers and infinite
dimensions in the z- and y-directions. The iteration losses
that occur in guides of finite cross section are discussed in
Section III.

The beammodes (22), (23) have a constant beamwidth in
the z-direction, but their beamwidth in the y-direction varies
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periodically with z. This beam width has a minimum halfway
between the phase transformers and a maximum at the location
of the lenses. With (21) and (29) the 1/e-beamwidth at these
positions is given by

Awmin:%=2(;—:)2<%{-—l>4 (31a)
Aw —2— 1+('112—Z—?—)2 ’
max*‘vn nIBn
Rt % 2t 2t _%
‘z(ﬁ—n) [ﬁ(l‘ﬁ)] S

The expressions apply to the fundamental Gaussian mode of
TM polarization. The corresponding formulas for TE polariza-
tion are obtained by replacing v,,, (3, with %,, (,. For higher
order Gauss-Hermite modes the beamwidth will be somewhat
larger. For given lens spacing 2z;, optimum beam confinement
near the z-axis is achieved when the focal length f of the
lenses is chosen such that Awp,,, is as small as possible,
which will occur for f ~ z, i.e., in the “confocal” case that
the focal points of adjacent lenses coincide. This result is well
known from the theory of conventional beam waveguides.

A useful measure for the lateral extent of the beammodes
in the z-direction is the fraction 7, of the total power of these
modes that is transmitted in the air region outside the dielectric
slab. With (7), (22), and (23), 7,, and 7,, are easily calculated:

= [DFix)de e,

LT () Ry e e

| - (&) |
kod[(%)Q - 1] ’ [( %)2(55 +1) - 53] + e,

for TM modes (32a)
_ [ G2(z)dx 1
T G2 () ds s — 1
= \2
IB'VZ
= (®)
1
N z
kod[(%) - 1] +1
for TE modes. (32b)

Figs. 3 and 4 show 7,, and 7, versus k,d for various slab
permittivities. Away from cut-off, power in the air region is
small, in particular for large €, and most of the energy of the
beammodes is transported inside the dielectric.

To avoid overmoding, it may often be desirable to chose the
slab thickness d sufficiently small so that the guide suppotts
only the n = o group of Gauss—Hermite beam modes. The
condition on d is:

0 < kod < ——es
eg— 1
3

™
—_— < hpd < = —= .
65—1<0 <2 gs— 1

for TM modes  (33a)

for TE modes (33b)

[NeaR
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Fig. 3. Fraction 7, of power of TM polarized beammodes transmitted
outside dielectric slab: 7, versus kod for various &s.

The upper limits are given by the appearance of the n = 1
group of beammodes. Near this upper limit the percentage of
the power of the n = 0 beammodes transmitted outside the
slab is small, i.e.

no = 0.028 7, =006l for e, =22
no = 0.018 7, = 0.060 ey = 4.0
no = 0.0085 7, = 0.059 ee=12. (34

In this configuration, the dielectric slab-beam waveguide
should be particularly well suited for the design of planar
quasi-optical circuits.

The characteristics of the beammodes of the dielectric slab-
beam waveguide may be summarized as follows:

1) In the direction normal to the slab surface (z-direction)
the beammodes behave as surface waves guided by the slab.
Their magnitude decreases exponentially away from the slab
and their energy is largely confined to the interior of the slab.

2) In the lateral direction parallel to the slab surface (y-
direction) the beammodes behave as reiterative wavebeams of
the Gauss—Hermite type which are guided by the sequence of
equally spaced identical phase transformers that are inserted
in the slab and periodically reset the cross sectional phase
distribution of the beammodes.
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Fig. 4. Fraction 7j,, of power of TE polarized beammodes transmitted outside
dielectric slab: 7,, versus kod for various &s.

3) The propagation constant of the beammodes in the lon-
gitudinal direction (z-direction) equals ko at cut-off and, with
increasing frequency, approaches k. It is always within the
region ko < Bn, B, < ks thus characterizing the beammodes
as surface waves guided by the dielectric slab.

4) The beammodes form a system of orthogonal modes that
allows the complete description of any wavebeam guided by
the dielectric slab-beam waveguide.

5) While conventional beam waveguides are virtually non-
dispersive if z;, f 3> A, the beammodes of the dielectric
slab-beam waveguide show the dispersion of the dielectric
slab guide. The phase velocity and group velocity of the
beammodes can be derived from (8) and (27). Disregarding
dispersion effects caused by the phase transformers (which
should be small for thin lenses) one obtains

w w Co

Up R 5 BT _ ﬂ_n = — (35a)
T Va@f — )
2
~ /Bn Co &) Eeff (35b)

Vg R — =
g w 55(1 - 77n) + M VEeff €Cavg
where ¢, is the free space wave velocity, e.¢ is defined in

the usual manner as (8,/ ko)2, and the “average” dielectric
constant of the guide

Eavg = €s(L — M) + 7
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is obtained by weighting the permittivities of the dielectric slab
and the air region with the relative powers transmitted in these
regions. Equation (35) holds for both TM and TE polarization
if in the latter case 3,, 7, are replaced by 3,,, 7,,.

A recent experimental study [3] has yielded results in good
agreement with the theory presented here.

III. DIELECTRIC SLAB-BEAM
WAVEGUIDE OF FINITE CROSS SECTION

The theory presented in Section II applies to an idealized
dielectric slab-beam waveguide of infinite cross section dimen-
sions. Since the beammodes (22), (23) decrease exponentially
away from the z-axis in both transverse directions one may
expect that the performance of the guide is not appreciably
degraded in the actual case of finite dimensions.

The situation however is somewhat more complex for
the following reason. In the case of a conventional beam
waveguide the “spill-over” effect due to the finite size of
the phase transformers will not lead to field distortions. Any
energy, that after passing a given lens by-passes the following
lens, will be radiated away from the guide and can be regarded
as lost. In the case of the dielectric slab-beam waveguide
this spill-over energy (more precisely, the part of this energy
caused by the finite y-dimension of the lenses and traveling
within the dielectric slab), will be reflected at the side walls of
the slab and bounce back and forth between these walls, with
little attenuation, in particular when the permittivity of the
slab is high and its thickness is sufficiently far above cut-off.
To minimize field distortions the reflection coefficient of the
sidewalls must be controlled, for example by covering these
walls with absorbing material or by replacing vertical walls
with tapered transitions, as indicated in Fig. 5. The associated
iteration loss can be kept small by choosing the width w of
the slab sufficiently large e.g. w > 3Awmnax; see (31b).

A second problem derives from the limited height of the
lenses in the z-direction. For ease of fabrication, the lenses
should not extend beyond the upper surface of the dielectric
slab, and in an actual guide, the phase transformation (25) will
be performed only within the dielectric slab but not in the air
region above it. Since part of the power of the beammodes
is transmitted in the air region, this truncation of the phase
correction will lead to scattering, resulting in an increased
iteration loss, and mode conversion, possibly causing field
distortions.

An estimate of these effects is derived in the Appendix.
The guide considered here satisfies conditions (33), so that it
supports only the beammode group of order n = 0. The phase
transformers are assumed to be very thin, planar devices.” A
fundamental Gaussian beammode of unit amplitude is assumed
incident upon the phase transformer in the plane z = 2
and determines the field distribution in the input plane of the
device. The field distribution in the output plane is obtained
by applying the phase transformation (25) in the region 0 <

2The width of the phase transformers in the y-direction is assumed to be
sufficiently large in the present case, so that any iteration losses are caused
by their finite height only.
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Fig. 5. Arrangements to suppress reflection at sidewalls of dielectric slab:
(a) usc of absorbing material. (b) use of slanted instead of vertical sidewalls.

z < d, i.e. within the dielectric slab, while no phase correction
is performed in the air region d < z < oc.

Using the orthogonality relations (30), the field distribution
in the output plane is expanded into the beammode spectrum
of the guide section z; < 2z < 3z:. The power P, of the
fundamental Gaussian beammode will be smaller than that of
the incident beammode, and is a measure for the iteration loss.
The powers P, in higher-order Gauss—Hermite beammodes
indicate the magnitude of the mode conversion effect. The
power P, scattered by the truncated phase transformer is
found by invoking energy conservation, i.e., by subtracting
the power of the combined beammode spectrum of the guide
section z; < z < 3z; from the power of the incident beam-
mode (see discussion in the Appendix).

For a conformal guide with f = z; one obtains:

P

P_° =1—0.45m0 + 0.1573 (362)
fo’s} Pm
> = 0.30n3 (36b)

m=2,4--

v

> P
=1- ™ —=0. — 36
Fo=1 mgjo P = 0:45m0(L — o) (360)

where P, is the power of the incident Gaussian beammode
and 7o is given by (32). The formulas hold for both TM- and
TE-polarization where in the TE case 7 is replaced by 7.
Equations (36) indicate that roughly one half of the power
transmitted outside the dielectric slab is lost with each iter-
ation. Most of this power is scattered away from the guide,
while the power transformed into higher order beammodes is
proportional to 7Z and small in higher order. Hence little mode
conversion will occur when 79 is small, i.e. when the electrical
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thickness of the slab, k,d, is sufficiently far above cut-off; see
(34). In this region of small 7, the iteration loss is expected
to be in the order of a few percent, depending on the guide
permittivity, while field distortions will be minimal.

The total iteration loss of an actual dielectric slab-beam
waveguide, of course, consists of several parts including
dielectric losses in the slab material; reflection and absorption
losses of the lenses; and diffraction losses due to the finite size
of the lenses both in the z- and y-directions. All of these losses
can be made small, by appropriate design of the guide, except
for the loss associated with the finite height of the lenses,
which is inherent with the guide configuration. Equation (36)
provides a first estimate of this loss; an accurate determination
will require further study.

APPENDIX

Estimate of Effects of Finite Height of Phase Transformers

In an actual dielectric slab-beam waveguide, the height of
the phase transforming lenses will not extend beyond the
dielectric slab; see Fig. 1. This height limitation has two
effects:

1) Some of the energy of the beammodes will be scattered
away from the guide, leading to an iteration loss.

2) Coupling between the beammodes will occur, leading to
mode conversion and field distortions.

We estimate these effects for a guide whose electrical thickness
k,d satisfies conditions (33) so that the guide supports only the
n = 0 group of beammodes. We assume furthermore that the
phase transformers are thin, planar devices and that their width
w is sufficiently large so that their finite y-dimension does
not noticeably contribute to the iteration loss. The calculations
below apply to the TM case but are analogous in the TE case.

A fundamental Gaussian beammode of unit amplitude is
incident upon the phase transformer at z = 2, in Fig. 2. With
(22a) its field distribution in the input plane of the phase
transformer is given by:

to kol k 020
E, _‘/5 k2° H, = ( k") Fo(2)Qoo(x, z)e 7P

forz=2-686§—0
withk =k, forz <d
k=ky forz>d. 37

The transverse field components only are shown here since
they determine the field uniquely. The field distribution in the
output plane is obtained by applying the phase transformation
(25)

Ady) =~ — B

in the slab region 0 < z < d, while no phase correction is
performed in the air region d < z < oc. Thus

_ [#o koBo ,, _ 1
By we 1=

Fo(2)Qoo(y, 2¢)
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e~ ilBoz—Ad(y)]

O<x<d

E =, 2 bo Hy = Fy(z)Qooly, 2 )e~3F0=
€p ]{?0
d<z <00

forz=2z+6,6—0 38)
The field in the space range z; < z < 3z is written as a
superposition of beammodes

_ [ho kobo
E, = oy H,
k 1
.__( ]:) Fy .’L’) Z Am Fgor()m)z

' QOm(y,Z - 2zt)€ Bo(2—2z4)

for 2z, < 2z <3z 39
where I'y,,, is given by (27). The expansion coefficients A4,
are obtained by equating the fields (38) and (39) in the plane
z = 2; + 6 and application of the orthogonality relation (30a).
The necessary integrations can be performed analytically with

the result

e

Ag=1—-|1—- ——— m=0 40a
0 ( m)lno ( )
W (_j)% eI ( w, )’—é“
™ 2F () Vivgw \1¥juw )

m:even (40b)
A, =0 m:odd

with

Note that the beammode expansion (39), (40) represents only
the guided field in the space range z; < z < 3z, i.e. the field
that can be expressed in terms of the surface wave modes
of the dielectric slab. The field scattered at the (truncated)
phase transformers would have to be expressed in terms
of the radiative modes of this guide. These modes have
been disregarded in the main text; but their total power can
be obtained by invoking energy conservation. The radiative
modes [6], [7] are powerwise orthogonal to the guided modes
(beammodes) and we have

(41)

where Pnc is the power of the incident wavebeam, P, is the
power of the beammode of order m and P; is the scattered
power. With (30a) and (39) through (40)

P _ g TP (422)
20 - __& a
Pinc o v 1+ jwt
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—~ Pn 1
=21 ——— 42b
m; Pine no( \/1+wt> ( )
3 ei®
=2n9(1 —1no) |1 — Re (42c)

ne

inc V 1+ j’wt

where ng, (32a), is the fraction of the total power of each
beammode that is transmitted outside the dielectric slab. Away
from cut-off, 79 is small; see Figs. 3 and 4. Equation (42a)
shows the relative power of the fundamental beammode after
passing the phase transformer and indicates the iteration loss.
Equation (42b) is the power converted into higher order
Gauss—Hermite beam modes and indicates the magnitude of
field distortion effects; due to the symmetry of the problem,
only the beam modes of even order are excited.

The expressions for Py, and P, depend significantly on
@, the electrical thickness of the phase transformers at their
center y = 0. The primary reason for this dependence is the
assumption of planar, infinitely thin phase transformers which
cause a sharp phase jump (field discontinuity) at their upper
edge x = d. Actual phase transformers (lenses) have a center
thickness of several wavelengths or more, and the phase jump
is smoothed out into a gradual phase transition. To simulate
this situation we assume in the following ¢ = 2um (u : integer)
so that the phasejump is zero at y = 0 where the field strength
of the incident mode is at a maximum. Assuming furthermore
a confocal guide with f = z; and w; = 1, (42) reduce to

Doy 0.45m0 + 0.15m3 (432)
Pinc .
> P _ 03022 (43b)
m=2,4.- Pinc
P,
P = 0.45?70(1 - ’170) (430)
inc

indicating that roughly 50% of the power transmitted outside
the dielectric slab is lost with each iteration. Most of this power
is scattered away from the guide while the power converted
into higher order modes is proportional to 73 and a second
order effect.

Equations (42) and (43) were derived for the TM-case but
apply equally to the TE-case if 7o is replaced by 7y. The
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equations should be regarded as a first estimate; an accurate
assessment of the iteration loss will require further study.
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